Ideal für Robotik- und Experimentierschaltungen

RN-CONTROL Version 1.41

Dieses Board wurde speziell zum Experimentieren mit dem Mikrocontroller entworfen. Es eignet sich auch vorzüglich für den Einstieg in die Bereich Robotik und Mikrocontroller. Aber auch zahlreiche andere Verwendungen sind denkbar, das kostengünstige Board kann auch sehr gut zum realisieren von Projekten eingesetzt werden..

Hunderte von Bastlern haben dieses Board schon aufgebaut und damit den Einstieg in die Mikroelektronik erlernt. Dadurch ist auch schnelle Hilfe bei Soft- und Hardwarefragen in gängigen Foren wie dem <u>Roboternetz.de</u> möglich. Viele Beispielprogramme findet man ebenfalls im Roboternetz, RN-Wissen.de und natürlich <u>Mikrocontroller-Elektronik.de</u> auf welcher das Projekt unter der CC-Lizenz freigegeben wurde.

Ich denke die Leistungsdaten und Features können überzeugen!

Doku aktualisiert am 09.4.2015

Dieses Werk ist lizenziert unter einer <u>Creative Commons Namensnennung - Nicht-kommerziell -</u> Weitergabe unter gleichen Bedingungen 4.0 International Lizenz.

Lizenzhinweis

Dieses Projekt dient vornehmlich für Lehrzwecke und zum Experimentieren. Für den Aufbau sollten ausreichend Elektronik Grundkenntnisse und Kenntnisse bezüglich der Sicherheit (Experimentieren mit Strom und Handhabung gängiger Werkzeuge wie Lötkolben etc.) vorhanden sein. Auf der Seite <u>www.Mikrocontroller-Elektronik.de</u> empfehle ich diesbezüglich noch interessante Literatur mit der man sich dies erarbeiten kann. Weitere Literaturtipps sind auch unter <u>RN-Wissen.de</u> in der Rubrik <u>Buchvorstellungen</u> zu finden. Für Fragen bezüglich Elektronik und Mikrocontroller empfehle ich das Forum: <u>Roboternetz.de</u>

Um ihnen weitgehende Möglichkeiten zum Nutzen der Schaltung einzuräumen, wurde dieses Projekt jetzt unter die CC-Lizenz gestellt. Sie haben So die Möglichkeit die Schaltung beliebig zu verändern oder weiterzugeben. Lediglich die kommerzielle Weitergaben ist nur mit Genehmigung möglich! Genauere Hinweise finden Sie im Lizenztext.

Dieses Projekt (Schaltung und Projektdateien) steht unter der Creative-Commons-Lizenz Namensnennung - Nicht-kommerziell - Weitergabe unter gleichen Bedingungen 4.0 International.Um eine Kopie dieser Lizenz zu sehen, besuchen Sie <u>http://creativecommons.org/licenses/by-nc-sa/4.0/</u>

Lizenziert wurde das Projekt von:

User Frank / www.Roboternetz.de & www.Mikrocontroller-Elektronik.de

Dieser Name und diese Webseiten sind bei der Weitergabe stets deutlich sichtbar zu nennen!

Achtung: Es kann keinerlei Garantie für die Fehlerfreiheit der Schaltung oder anderer Projektdateien übernommen werden! Der Nachbau und Betrieb geschieht auf eigene Gefahr! Jegliche Haftung für Schäden wird ausgeschlossen! Schadensersatzansprüche, gleich aus welchem Rechtsgrund, sind ausgeschlossen.

Dieses Projekt (Schaltung und Projektdateien) steht unter der Creative-Commons-Lizenz Namensnennung - Nicht-kommerziell - Weitergabe unter gleichen Bedingungen 4.0 International. Um eine Kopie dieser Lizenz zu sehen, besuchen Sie http://creativecommons.org/licenses/by-nc-sa/4.0/

Lizenziert wurde das Projekt von: User Frank www.Roboternetz.de & www.Mikrocontroller-Elektronik.de Dieser Name und diese Webseiten sind bei der Weitergabe stets deutlich sichtbar zu nennen! Über diese Lizenz hinausgehende Erlaubnisse können Sie unter http://www.mikrocontroller-elektronik.de/ erhalten.

Achtung: Der Nachbau und Betrieb geschieht auf eigene Gefahr! Jegliche Haftung für Schäden wird ausgeschlossen! Es kann keinerlei Garantie für die Fehlerfreiheit der Schaltung oder anderer Projektdateien übernommen werden!

Wichtige Hinweise und Haftungsausschluss

Lesen Sie bitte diese Hinweise, bevor sie dieses Projekt nachbauen bzw. in Betrieb nehmen.

Bestimmungsgemäße Verwendung: Dieses Projekt ist nur Entwicklungsaufgaben, Forschung, Lehrzwecke und Unterricht und Prototypenbau konzipiert! Für die Einhaltung der technischen Vorschriften sind sie selbst verantwortlich.

Sicherheitshinweise

Beim Umgang mit Produkten, die mit elektrischer Spannung in Berührung kommen, müssen die gültigen VDE-Vorschriften beachtet werden, insbesondere VDE 0100, VDE 0550/0551, VDE 0700, VDE 0711 und VDE 0860.

Werkzeuge dürfen an Geräten, Bauteilen oder Baugruppen nur benutzt werden, wenn sichergestellt ist, dass die Geräte von der Versorgungsspannung getrennt sind und elektrische Ladungen, die in den im Gerät befindlichen Bauteilen gespeichert sind, vorher entladen wurden.

Spannungsführende Kabel oder Leitungen, mit denen das Gerät, das Bauteil oder die Baugruppe verbunden ist, müssen stets auf Isolationsfehler oder Bruchstellen untersucht werden. Bei Feststellen eines Fehlers in der Zuleitung muss das Gerät unverzüglich aus dem Betrieb genommen werden, bis die defekte Leitung ausgewechselt worden ist. Bei Einsatz von Bauelementen oder Baugruppen muss stets auf die strikte Einhaltung der in der zugehörigen Beschreibung genannten Kenndaten für elektrische Größen hingewiesen werden. Wenn aus einer vorliegenden Beschreibung für den nicht gewerblichen Endverbraucher nicht eindeutig hervorgeht, welche elektrischen Kennwerte für ein Bauteil oder eine Baugruppe gelten, wie eine externe Beschaltung durchzuführen ist oder welche externen Bauteile oder Zusatzgeräte angeschlossen werden dürfen und welche Anschlusswerte diese externen Komponenten haben dürfen, so muss stets ein Fachmann um Auskunft ersucht werden. Es ist vor der Inbetriebnahme eines Gerätes generell zu prüfen, ob dieses Gerät oder Baugruppe grundsätzlich für den Anwendungsfall, für den es verwendet werden soll, geeignet ist!

Im Zweifelsfalle sind unbedingt Rückfragen bei Fachleuten, Sachverständigen oder den Herstellern der verwendeten Baugruppen notwendig!

Bitte beachten Sie, dass Bedien- und Anschlussfehler außerhalb unseres Einflussbereiches liegen. Verständlicherweise können wir für Schäden, die daraus entstehen, keinerlei Haftung übernehmen. Bei Installationen und beim Umgang mit Netzspannung sind unbedingt die VDE-Vorschriften zu beachten. Geräte, die an einer Spannung über 35 V betrieben werden, dürfen nur vom Fachmann angeschlossen werden. In jedem Fall ist zu prüfen, ob der Bausatz oder die Platine für den jeweiligen Anwendungsfall und Einsatzort geeignet ist bzw. eingesetzt werden kann.

Derjenige, der einen Bausatz fertigstellt oder eine Baugruppe durch Erweiterung bzw. Gehäuseeinbau betriebsbereit macht, gilt nach DIN VDE 0869 als Hersteller und ist verpflichtet, bei der Weitergabe des Gerätes alle Begleitpapiere mitzuliefern und auch seinen Namen und Anschrift anzugeben. Geräte, die aus Bausätzen selbst zusammengestellt werden, sind sicherheitstechnisch wie ein industrielles Produkt zu betrachten.

Für alle Personen- und Sachschäden, die aus nicht bestimmungsgemäßer Verwendung entstehen, ist nicht der Hersteller sondern der Betreiber verantwortlich. Bitte beachten Sie, das Bedien- und/und Anschlussfehler außerhalb unseres Einfußbereiches liegen. Verständlicherweise können wir für Schäden, die daraus entstehen, keinerlei Haftung übernehmen.

Als hier die Leistungsmerkmale auf einen Blick:

- Wahlweise 7,37 oder 16 Mhz Taktfrequenz (auch beliebiger anderer Quarz denkbar), empfohlen wird 16 Mhz!
- Schneller AVR Mega 16 oder Mega 32 Mikrocontroller (bis zu 32K Speicher, 2K Ram und 1K EEPROM), 32 programmierbare I/O Pins,8 AD Ports u.v.m. Alternativ auch ATMega 644 verwendbar
- 8 Leuchtdioden per DIP-Schalter deaktivierbar und anderen Ports per Steckbrücke beliebig zuzuordnen
- alle Portleitungen sind über Stecker nach außen geführt. Die Steckerbelegung entspricht der Roboternetz-Definition als auch der des Atmel Entwicklungsboards STK500
- alle Ports sind zusätzlich über Steckbuchse erreichbar. Ideal zum experimentieren da einfach Drähte (ca. 0,5mm²) eingesteckt werden (kein Löten oder schrauben). So können einfach andere LED's zugeordnet werden oder ein Steckbrett verbunden werden
- Der wichtige Port A (wahlweise 8 digitale oder analoge Ein- o. Ausgänge) ist zusätzlich noch über eine Qualitätssteckklemme mit Hebel herausgeführt
- Motortreiber mit ca. 1A (2x 0,5A) belastbar für zwei Getriebemotoren oder 1 Schrittmotor. Dieser kann auch für andere Zwecke (Relaisansteuerung, Lämpchen etc.) genutzt oder einfach entfernt werden
- Integrierter programmierbarer Mini-Lautsprecher um Töne auszugeben
- 1 Reset Taster
- 5 Taster für beliebige Verwendung. Sie belegen nur einen analogen Port!
- 5 V Spannungsstabilisierung mit 2 A Belastbarkeit, auch herausgeführt für Erweiterungen
- Eingangsspannung gegen Verpolung geschützt
- RS232 mit normgerechtem Pegelwandler (MAX232) PC direkt anschließbar
- Batteriespannung kann im Programm abgefragt werden
- ISP Programmierschnittstelle für übliche AVR-Programmieradapter (10polig)
- auch per RS232 Programmierbar wenn man Bootloader installiert (siehe in Doku hinten unter BOOTLOADER)
- Betriebsspannung wahlweise zwischen 7 und 18V (empfohlen 7 bis 14 V) wahlweise auch höhere Motorspannung bis 24V möglich)
- Sehr kompakt, nur halbes Europaformat nach Roboternetz-Definition (ca. 100x75mm)
- I2C-Bus über die zahlreiche Erweiterungsplatinen anschließbar sind (z.B. Sprachausgabe RN-Speak, Relaisboard RN-Relais, Servoboards, LCD's uvm.)
- Programmierbar in zahlreichen Sprachen, z.B. Basic (BASCOM), C (GCC), AVR-Studio, Assembler, Pascal (viele Entwicklungsumgebungen sind frei im Internet erhältlich)

- Deutsche Doku mit Basic Programmbeispiel
- Kein Starter- oder Applikationsboard notwendig bereits alles integriert!

Diagramm und Beschreibung der Anschlüsse

Bezugsquelle: www.robotikhardware.de

Aufbau und Anwendung

Aufbau

Der Aufbau der Schaltung ist durch die vorgefertigte Platine eigentlich völlig problemlos auch von Elektronik-Einsteigern zu bewerkstelligen.

Die Eagle-Dateien zum Projekt können über <u>http://www.mikrocontroller-elektronik.de/</u> heruntergeladen werden. Diese können genutzt werden um sich bei einem Platinenhersteller eine Platine anfertigen zu lassen. Auf unserer <u>Seite</u> nennen wir gerne einige Hersteller die sowas machen.

Durch den Bestückungsdruck und die Bestückungsliste, etwas weiter hinten in dieser Dokumentation, ist der Aufbau unkritisch. Aufgrund moderner Bauteile hält sich die Anzahl der Kleinteile in Grenzen, weshalb die Schaltung meist in ca. 30 bis 60 Minuten aufgebaut ist.

Dennoch einige Anmerkungen zu kleinen Hürden:

- Das Board verwendet zwei Widerstandsnetzwerke . Auf der Platine ist die mit RN1 und RN2 gekennzeichnet. Da diese Teile Einsteigern noch nicht so bekannt sind, möchte ich darauf hinweisen das diese richtig herum eingelötet werden müssen. Auf den schwarzen Teilen ist auf einer Seite ein Punkt. Dieser Punkt muss auf die Seite wo auf der Platine eine kleine 1 aufgedruckt ist.
- 2. Sie können frei wählen welchen Quarz Sie einlöten. In der Regel reichen 7,3728 Mhz voll aus, damit ist das Board noch immer schneller als viele vergleichbare Boards dieser Preisklasse, zudem braucht es dann weniger Strom als mit 16 Mhz. Brauchen Sie jedoch die volle Rechenpower, dann ist 16 Mhz sinnvoll. Bei 16 Mhz brauchen Sie jedoch auch einen guten Programmieradapter, billige Lösungen machen hier manchmal Probleme mit der Übertragung. Einige werden wir demnächst auf unserer Seite vorstellen! Dir krumme Zahl 7,3728 Mhz hat noch einen zweiten Vorteil. Mit dieser Frequenz ist die Baudrate der RS232 ganz exakt, weshalb sich damit höhere Übertragunsgeschwindigkeiten erreichen lassen. Nachtrag: Seit geraumer Zeit gehört nur noch der 16 Mhz Quarz zum Lieferumfang da dieser zu 99% sowieso immer eingesetzt wurde. Er kann natürlich bei Bedarf durch einen beliebigen anderen zwischen 1 und 16 Mhz ersetzt werden.
- 3. Achten Sie darauf das die Taster richtig herum eingelötet ist. Richten Sie sich am besten nach dem Foto. Wenn die Platine so vor ihnen liegt das die Beschriftungen T1, T2, T3 usw. auf dem Kopf stehen, dann dürfen die Beine der Tastern nur links und rechts von dem Tastergehäuse zu sehen sein.
- 4. Erfahrenere Anwender die die Referenzspannung von 2,5V zusammen mit der Batterieüberwachung nutzen wollen und zugleich mehr als 13,4V Eingangsspannung anlegen möchten, wird empfohlen bei R9 einen größeren Widerstand als 22K zu verwenden (z.B. 33k). Einsteiger sollten den Jumper (Kurzschlusstecker) auf UREF immer erst gesteckt lassen (UREF ist dann 5V).
- 5. Bezüglich der Polung LED's auf den Bestückungsdruck in der Anleitung achten. Da wo die flache Seite der LED ist, muss das kurze Bein (Kathode) eingelötet werden
- 6. Nicht vergessen das zu den meisten IC's Fassungen mitgeliefert werden, also immer Fassung und nicht IC direkt einlöten

7. Die Polung des Piezo Lautsprechers ist nicht zu beachten, er kann beliebig eingelötet werden

Das waren eigentlich schon die besonderen Punkte die zu beachten sind. Ansonsten natürlich sauber mit einem 15 – 25 W Lötkolben alles auf der Unterseite verlöten. Grundkenntnisse beim Löten werden empfohlen.

Nach dem Aufbau sollten Sie nochmals alle Lötpunkte kontrollieren. Wenn Sie dann Spannung anlegen, dann sollten deutlich weniger als 100mA Strom fließen. Ist der Strom höher, dann deutet das auf ein Lötfehler hin.

Das mitgelieferte Testprogramm kann dann recht einfach mit Bascom oder Pony übertragen werden. Per Tastendruck können anschließend verschiedene Boardeigenschaften überprüft werden.

Der Spannungsregler wird beim Betrieb von RN-Control sehr warm, insbesondere wenn alle LED's leuchten und eventuell noch Verbraucher angeschlossen sind. Dies ist jedoch völlig normal und kein Grund zur Besorgnis, der Spannungsregler ist dafür ausgelegt. Er ist im übrigen intern mit einem Hitzeschutz als auch Kurzschlussschutz ausgestattet, er ist also nahezu unzerstörbar.

Lediglich wenn sie Verbraucher anschließen welche sehr viel Strom der 5V Leitung entnehmen, so kann es erforderlich werden ein Kühlkörper anzuschrauben. RN-Control ist so konstruiert das wahlweise ein Kühlkörper montiert werden kann oder aber das der Spannungsregler einfach an eine Gehäusewand geschraubt wird. Alternativ wäre auch ein Metallwinkel denkbar welcher die Wärme auf ein Bodenblech weiterleitet. Diese Kühlmaßnahmen sind wie gesagt nur bei höherer Stromentnahme notwendig, zum Beispiel wenn Sie ein LCD mit Beleuchtung anschließen. Die Beleuchtung kann bei vielen LCD's schon recht viel Strom verbrauchen.

Erläuterung der Anschlüsse, Regler und Kurzschlussbrücken

Anschluss-	Erläuterung
Bezeichnung	
Port A	Digitaler I/O und analoger Port (PA 0 bis PA7 und ADC0 bis ADC7) Über eine Steckklemme werden hier die 8 Portleitungen PA0 bis PA 7 zur Verfügung gestellt. PA7 befindet sich dabei ganz links und PA0 ganz rechts. Anschlußdrähte können einfach eingesteckt werden, indem man mit einem Kugelschreiber oder Schraubenziehen den oberen weißen Hebel etwas nach unten drückt. Die Ports PA7 bis PA0 können sowohl als normaler I/O-Port (Ein- und Ausgabeport) oder als AD- Port's programmiert werden. Somit könnten also auch bis zu 8 Spannungen quasi gleichzeitig gemessen werden.
	Ist der Kurzschlusstecker UREF eingesteckt, dann können Spannungen bis zu 5V gemessen werden. Ist UREF offen, dann können Spannungen nur bis 2,5V gemessen werden. Durch geeignete Spannungsteiler kann der Meßbereich natürlich beliebig erhöht werden. Achtung: Die zulässige Höchstspannung 2,5V oder 5V darf am Port nicht überschritten werden, dieses würde den Port zerstören!
	Vorbelegung: Port PA7 wird auch für die Tastenabfrage genutzt. indem über einen Spannungsteiler verschiedene Spannungen per Tastendruck angelegt werden (siehe Schaltplan). Solange keine Taste gedrückt ist, ist dieser jedoch frei Verfügbar. Port PA6 wird über einen Spannungsteiler (22k und 5,1K) zur Batteriespannungsmessung benutzt (siehe Schaltplan und Demoprogramm) wenn der Kurzschlusstecker UMESS eingesteckt ist. Durch entfernen dieses Steckers steht der Port zur freien Verfügung.
	Der komplette Port steht auch nochmals über die Buchsenleiste JP2 zur Verfügung. Auch dort können Drähte zum experimentieren eingesteckt werden (möglichst 0,6mm ²).
Port B	Digitale I/O Port B (PB0 bis PB 7) Über einen Wannenstecker werden gemäß der Roboternetz-Definition 8 I/O Portleitungen mit Sonderfunktionen als auch GND und +5V bereitgestellt.
ll 💿 🖻 K	Die genaue Belegung sieht wie folgt aus:
	 Pin 1 PB0 / T0 / XCL / wird vom Motortreiber für Motor 2 Kanal 1 genutzt Pin 2 PB1 / T1 / wird vom Motortreiber für Motor 2 Kanal 2 genutzt Pin 3 PB2 / AIN0 / INT2 / wird auch vom I2C-Bus genutzt Pin 4 PB3 / AIN1 / OC0 Pin 5 PB4 / SS Pin 6 PB5 / MOSI / wird auch vom ISP Anschluss genutzt
	Pin 7 PB6 / MISO / wird auch vom ISP Anschluss genutzt
	Pin 8 PB7 / SCK / wird auch vom ISP Anschluss genutzt Pin 9 GND Pin 10 +5V
	Durch entfernen des Motortreiber IC's aus der Fassung, steht PB0 und PB1 zur freien Verfügung.
	Der komplette Port steht auch nochmals über die Buchsenleiste JP3 zur Verfügung. Auch dort können Drähte zum experimentieren eingesteckt werden (möglichst 0,6mm ²).

Port C	Digitale I/O Port C (PC0 bis PC 7)
	Über einen Wannenstecker werden gemäß der Roboternetz-Definition 8 I/O Portleitungen mit Sonderfunktionen als auch GND und +5V bereitgestellt.
	Die genaue Belegung sieht wie folgt aus:
	Pin 1PC0 / SCL wird vom I2C-Bus genutztPin 2PC1 / SDA wird vom I2C-Bus genutztPin 3PC2 / TCKPin 4PC3 / TMSPin 5PC4 / TDOPin 6PC5 / TDI
	Pin 8 PC5 / TOSC1 / wird vom Motortreiber für Motor 1 Kanal 1 genutzt Pin 8 PC7 / TOSC2 / wird vom Motortreiber für Motor 1 Kanal 2 genutzt Pin 9 GND
	Pin 10 +5V Über den 8 fachen DIP Schalter können den Ports auch LED's zugeschaltet werden! Die LED's leuchten wenn Port LOW-Zustand annimmt!
	Durch entfernen des Motortreiber IC´s aus der Fassung, steht PC6 und PC7 zur freien Verfügung. Der komplette Port steht auch nochmals über die Buchsenleiste JP4 zur Verfügung. Auch dort können Drähte zum experimentieren eingesteckt werden (möglichst 0,6mm ²).
Port D	Digitale I/O Port D (PD0 bis PD 7) Über einen Wannenstecker werden gemäß der Roboternetz-Definition 8 I/O Portleitungen mit Sonderfunktionen als auch GND und +5V bereitgestellt.
	Die genaue Belegung sieht wie folgt aus:
	Pin 1PD0 / RXD / wird für RS232 Schnittstelle genutztPin 2PD1 / TXD / wird für RS232 Schnittstelle genutztPin 3PD2 / INT0Pin 4PD3 / INT1Pin 5PD4 / OC1B / wird für PWM Motor 1 benutzt (Geschwindigkeitsregelung)
	Pin 6 PD5 / OC1A / wird für PWM Motor 2 benutzt (Geschwindigkeitsregelung) Pin 7 PD6 / ICP Pin 8 PD7 / OC2 Pin 9 GND Pin 10 +5V
	Durch entfernen des Motortreiber IC's aus der Fassung, steht PD4 und PD5 zur freien Verfügung. Der komplette Port steht auch nochmal über die Buchsenleiste JP5 zur Verfügung. Auch dort können Drähte zum experimentieren eingesteckt werden (möglichst 0,6mm ²).
I2C-Bus	I2C-Bus Über diesen Bus lassen sich zahlreiche Erweiterungen an dieses Board anschließen. Zum Beispiel werden auf der Seite roboternetz.de passende Boards mit Sprachausgabe, Relais, Schrittmotorsteuerung etc. vorgestellt.
	Aber auch dieses Board kann selbst als Slave-Board, also als Erweiterung an ein anderes Hauptboard angeschlossen werden. Der I2C-Bus benötigt nur 2 Leitungen für alle Funktionen. Entsprechend der Roboternetz-Norm wird hier ein 2x5 poliger Stecker angeschlossen. Die Belegung entspricht exakt der anderer Roboternetz Boards. Pin 1 SCL (Taktleitung) Port PC0 Pin 3 SDA (Datenleitung) Port PC1
	Pin 5 +5V Pin 7 +5V Pin 9 Batteriespappung
	Pin 2,4,6,8 GND Pin 10 INT Diese Leitung kann von allen I2C-Bus Erweiterungen genutzt (Port PB2) werden um den Hauptcontroller darüber zu informieren das sich Daten (z.B. von Sensoren) verändert haben. In diesem Fall wird die Leitung solange auf Masse gelegt bis der entsprechende I2C-Baustein ausgelesen wird. Die Controller muss also immer alle I2C-Bausteine auslesen solange diese Leitung auf Masse liegt. Diese Leitung ist mit Port PD2 verbunden
	Die PIN's 5,7,9 und 10 können über herausnehmbare Kurzschlussbrücken (Jumper JP6) vom Board getrennt werden. Dies ist zum Beispiel dann notwendig, wenn bereits ein anderes Masterboard die Spannungen auf den Bus legt. Es darf immer nur ein Board die Spannungen bereitstellen.

ISP	ISP – IN SYSTEM PROGRAMMING
	Über diesen Anschluß kann der Controller auf dem Sprachboard mit einem Standard ISP-
	Kabel direkt an einen Parallelport des PC's angeschlossen und programmiert werden.
	Die Belegung des ISP-Anschlusses ist zu dem weit verbreitetet STK200 Programmier Dongle
	kompatibel. Ein entsprechender Dongle kann man sich entweder selber basteln (siehe Artikel
	"ARV Einstieg leicht gemacht" unter <u>www.roboternetz.de</u>)
	Pin 1 MOSI
110004	Pin 2 VCC
	Pin 3 Nicht delegt
N]	PIN 4 GND Din 5 DESET
	PIII 3 RESEI Din 6 CND
	Pin 7 SCK
	Pin 8 GND
	Pin 9 MISO
	Pin 10 GND
Power	Spannungsversorgung
	Über diese Schraubklemme wird das Board mit Spannung versorgt. Es reicht eine unstabilisierte
	Gleichspannung von 7 bis 14V aus (max. 18V wenn Kühlkörper verwendet wird)
	+ und – sind auf der Platine markiert. Das Board ist jedoch auch gegen ein verpolen geschützt, so
	das nichts kaputt geht!
Motoren	Motoren
	Uber diese 4 polige Schraubklemme können zwei Getriebemotoren (jeweils die beiden linken
	oder rechten Kontakte) oder ein Schrittmotor angeschlossen werden.
	Der Motortreiber kann jedoch auch für andere Dinge genutzt werden, z.B zum Ansteuern von
	Relais, Lampchen etc. verwendet werden. Die Belastbarkeit liegt bei 1A. Sollen großere Motoren
	angeschlossen werden, so kann Z.B. über den 120-Port eine andere Endsture angeschlossen werden
IDE	
JFO	ILC-Dus Deleguing Über drei Kurzschlussstecker können wahlweise die Bateriesnannung (LIB), +5V sowie INT mit
	dem I2C-Bus verbunden werden. Wenn INT nicht benötigt wird, kann man diesen Jumper offen
	lassen. Somit hat man einen Port zusätzlich frei zur Verfügung
	Möchte man das Board über den I2C-Bus mit Spannung versorgen, dann kann man UB oder +5V
	Jumper einstecken. In diesem Fall braucht/darf keine Spannung an dem Power Schraubklemen
	angelegt werden. Möchte man umgekehrt andere Boards über den I2C-Bus mit Spannung
	versorgen, dann müssen die Jumper UB und/oder +5V eingesteckt werden.
	Durch diesen Jumper ist man für alle Fälle gerüstet. Bei älteren RN-Control Versionen mußte man
	dazu noch das Kabel ändern.
JP8	Uber diesen Stecker kann die stabilisierte 5V Logikspannung für Erweiterungen oder Experimente
	entnommen werden. Wird mehr als 500mA entnommen, so sollte der Spannungsregier mit einem
	Reinen Kunkorper versenen werden.
UKEF	Referenzspannung Über eine Kurzschlussstecker kann hier die Referenzspannung von 5V eingestellt werden. Wird
	der Stecker entfernt, so kann an den analogen Ports nur his 2 5V gemessen werden (jedoch mit
	höherer Genauigkeit)
	Sicherheitshalber sollten Sie den Stecker anfangs eingesteckt lassen! Wird er entfernt, so sollte
	man daran denken das auch die Batteriespannung über einen analogen Port gemessen wird.
	Diese darf dann nicht viel höher als 13V sein!
UMOT	Motorspannung
	Wenn dieser Kurzschlussstecker eingesteckt wird, dann wird die volle Batteriespannung auch für
	die Motoren benutzt. Ansonsten könnte man über einen PIN dieses Jumpers auch eine höhere
	Versorgungsspannung für die Motoren nutzen. Dazu sollte sie aber nochmals in den Schaltplan
	schaun.
	In der Regel sollte nier ein Jumper eingesteckt sein!
UNE 33	Datteriespannungsmessung
	wenn diese Kurzschlussbrucke gesteckt ist, dann wird über Port PA6 die
	Batteriespannung überwacht. Ansonsten ist der Port frei!
S1	DIP Schalter
	Mit einem kleinen Schraubenzieher kann über diesen 8 poligen Schalter den Portleitungen PCO
	Dis PUT eine LED zugeschaltet werden. Die LED's leuchten immer dann wenn der Port LOW (0
	Menn die LED auf Off geschaltet wird, so kann die LED über eine Drehthrücke von JDZ mit einem
	anderen Port verbunden werden

RS232	PC kompatible RS232 Schnittstelle			
	Über ein Adapterkabel kann die serielle Schnittstelle des PC direkt mit dem Board verbunden			
	werden. Dies ist dann sinnvoll, wenn Fehler in Programmen gesucht . Einfache PRINT			
	Anweisungen werden von einem Terminalprogramm angezeigt.			
	Hier kann Hyperterminal von Windows oder das eingebaute terminalprogramm von Bascom			
	empfohlen werden.			
	Die Belegung ist kompatibel zum Conrad Roboter CCRP5:			
	Pin 1 RX			
	Pin 2 GND			
	Pin 3 TX			
	Ein geeignetes Anschlußkabel kann schnell selbst angefertigt werden.			
JP7	Über diese Buchse sind alle LED's ganz einfach durch Einstecken eines Drahtes beschaltbar.			
	Bedenken muß man dabei das die Anode über einen Vorwiderstand immer mit 5V verbunden ist.			
	Die LED leuchtet also nur wenn sie mit der Drahtbrücke auf GND bzw. einen Port mit 0			
	Pegel gelegt wird.			
JP1	Buchsenleiste die dreimal +5V und drei mal GND für Experimente bereitstellt			
JP2	Buchsenleiste die den gesamten Port A für steckbare Drähte bereitstellt			
JP3	Buchsenleiste die den gesamten Port B für steckbare Drähte bereitstellt			
JP4	Buchsenleiste die den gesamten Port C für steckbare Drähte bereitstellt			
JP5	Buchsenleiste die den gesamten Port D für steckbare Drähte bereitstellt			
TASTER T1 bis T5	Stehen zur freien Verfügung			
	Die Abfrage ist im Demoprogramm beschrieben			

Steckbuchsen

Um auch schnell und praktisch mit RN-Control experimentieren zu können, verfügt dieses Board über Steckklemmen die alle Ports herausführen. 0,5mm Drähte lassen sich dort direkt einstecken, so das Sensoren und dergleichen schnell und einfach verdrahtet werden können. Die genaue Belegung lässt sich in nachfolgendem Ausschnitt aus dem Bestückungsplan gut entnehmen.

Dieser Ausschnitt aus dem Bestückungsplan zeigt deutlich die Belegung der Steckklemmen

robotikhardware.de

Bauteile Bestell- und Bestückungsliste für RN-Control

r		(Angaben ohne Gewähr)	
Bauteil	Wert	Beschreibung Link zu Bezugsquellen a	uf unserer Projektseite
01	100		
	100n	Keramik Kondensator	KERKOIUUN KERKOIUUN
	100n	Keramik Kondensator	KERKOIUUN
03	22pi	Keramik Kondensator	KERKO-500 22p
	ZZPI	Keramik Kondensator	KERKO=500 22p
	4, /uF	ELKO	SM 4, 7/SURAD
07	4, /uF	EIKO	SM 4, 7/SURAD
	4, /ur		SM 4, 7/SURAD
	4,/uF	EIKO	SM 4, //SURAD
C9 C10	100m	EIKO Konomik Kondensaten	SM I, U/ 63RAD
	1000	Keramik Kondensator	KERKOLUUN KERKOLUUN
	1000	Keramik Kondensator	KERKOIUUN KEDKO100N
	1000	Reramik Kondensator	RERKULUUN
C13	1000uF	EIKO Konomik Kondensaten	RAD 1000/35
C14	1000	Keramik Kondensator	KERKOIUUN KERKOIUUN
C15	1000	Keramik Kondensator	KERKOIUUN KERKOIUUN
C10	10011 22011E		AERAOIUUN 220/35
	220ur 100p	EIKO Koromik Kondonastor	KAD 220/33 VEDV0100N
	10011 101110		1×4149
	1N4140 DVV27	Diode	III 4140 RVV 27/200
	BIV27	Wappopbuchso	BIV 27/200 WSI 10C
	TZC MAV232	PS232 Troibor	MAY 232 CDE
	MAA232 7805	Spappungsregler	MAA 232 CFE 78905
	7000 T293D	Motortreiber	
	MECA16-P	Atmel Mega 16 oder 32	ATMECA 16-16
TSP	AVR-ISP	Wannenhuchse	WSL 10C
.TP1	AVIC 101	Kontakthuchse (manuall kürzen)	SE 100 SE 20
JP2		Kontaktbuchse (manuell kürzen)	SPI. 20
JP3		Kontaktbuchse (manuell kürzen)	SPL 20
JP4		Kontaktbuchse (manuell kürzen)	SPL 20
JP5		Kontaktbuchse (manuell kürzen)	SPL 20
JP6		Stiftleiste	Stiftl. 2x50g (teilen)
JP7		Kontaktbuchse (manuell kürzen)	SPL 20
JP8		Stiftleiste	LU 2.5 MS2
LED1		Leuchdiode Low	LED 3MM 2MA GN
LED2		Leuchdiode Low	LED 3MM 2MA GN
LED3		Leuchdiode Low	LED 3MM 2MA GN
LED4		Leuchdiode Low	LED 3MM 2MA GN
LED5		Leuchdiode Low	LED 3MM 2MA GN
LED6		Leuchdiode Low	led 3mm 2ma gn
LED7		Leuchdiode Low	LED 3MM 2MA GN
LED8		Leuchdiode Low	LED 3MM 2MA GN
MOTOREN		Schraublemme 4 polig	AKL 101-04
PORTA		Steckklemme 8 polig	WAGO 233-508
PORTB		Wannenbuchse	WSL 10G
PORTC		Wannenbuchse	WSL 10G
PORTD		Wannenbuchse	WSL 10G
POWER		Schraubklemme 2 polig	AKL 101-02
Q1		Quarz 16 Mhz	16-HC18
R1	100k	Widerstand 100k	1/4W 100k

R2	1k	Widerstand 1k	1/4W 1k
R3	10k	Widerstand 10k	1/4W 10k
R4	1 k	Widerstand 1k	1/4W 1k
R5	1 k	Widerstand 1k	1/4W 1k
R6	1 k	Widerstand 1k	1/4W 1k
R7	1 k	Widerstand 1k	1/4W 1k
R8	1 k	Widerstand 1k	1/4W 1k
R9	22k	Widerstand 22k	1/4W 22k
R10	5 , 1k	Widerstand 5,1k	1/4W 5,1k
R11	10k	Widerstand 10k	1/4W 10k
R12	10k	Widerstand 10k	1/4W 10k
R13	10k	Widerstand 10k	1/4W 10k
R14	10k	Widerstand 10k	1/4W 10k
RESET	TASTER3301	Minitaster liegend	TASTER 3301
RN1		Widerstandsnetzwerk	SIL 9-8 1,0k
RS232		Stiftleiste 3 polig	LU 2,5 MS3
S1		DIP Schalter 8 polig	NT08
SPEAKER	F/CM12P	Mini Piezo Lautsprecher	SUMMER EPM 121
Т1	TASTER3301	Minitaster liegend	TASTER 3301
Т2	TASTER3301	Minitaster liegend	TASTER 3301
Т3	TASTER3301	Minitaster liegend	TASTER 3301
Т4	TASTER3301	Minitaster liegend	TASTER 3301
Т5	TASTER3301	Minitaster liegend	TASTER 3301
UMESS		Stiftleiste	LU 2,5 MS2
UMOT		Stiftleiste	LU 2,5 MS2
UREF		Stiftleiste	LU 2,5 MS2

Achten Sie darauf das zuerst die IC-Fassungen und nicht direkt die IC's eingelötet werden.

Platinen lassen sich über die Eagle Dateien sehr leicht anfertigen lassen. Die Eagle Dateien können über die **<u>Projektseite</u>** heruntergeladen werden.

Bestückungsplan

Der erste Test

Nachdem Board aufgebaut ist, können wir daran gehen und das Board testen. Zunächst sollten noch einmal alle Jumper (Kurzschlussbrücken) überprüft werden. Für den Ersten Einsteig empfehlen wir folgendes:

UMOT - Jumper einstecken (Damit Batteriespannung auch für Motoren verwenden)
 UREF - Jumper einstecken (Damit 5V Referenzspannung für Spannungsmessungen verwenden)
 UMESS – Jumper einstecken (Damit wird Batteriespannung über Port PA6 gemessen)

Danach ein möglichst ein Netzteil mit 7 bis 13 V anschließen, da benötigt man noch keinen Kühlkörper. Günstige Netzteile gibt's im Handel ab ca. 5 Euro! Wir empfehlen das 9V Netzteil! Wenn Sie kein finden, schauen sie mal auf die Seite <u>http://www.mikrocontroller-elektronik.de/</u>, dort werden wir viele Bezugsquellen für Bauteile, Sensoren usw. verlinken.

Hinweis: Bei der Netzteilspannung sollte man beachten, das auch die Motoren die volle Spannung vertragen. Verträgt Ihr Motor beispielsweise nur 6V, so kann zwar auch ein 12V Netzteil verwendet werden, jedoch muss man dann beim Ansteuern darauf achten das man "nie Vollgas gibt", also das PWM-Signal entsprechende programmiert. Dies ist im übrigen recht einfach!

Hat das Netzteil den falschen Stecker, einfach abschneiden und Drähte so in die Schraubklemmen einfügen. Auf Polung achten (auch wenn Verpolung das Board nicht beschädigen kann).

Falls Sie ein Messgerät haben, können Sie auch den Strombedarf des Boards checken. Wenn alles korrekt zusammengebaut wurde, muss dieser deutlich niedriger als 100 mA liegen. Bei 16 Mhz und Mega 16 bei ca. 60 mA!. Ein wesentlich höherer Strom würde auf Lötfehler hin deuten.

Ein weiterer Test wäre das anfassen des Spannungsreglers 78S05. Er darf warm bis sehr warm werden, aber man darf sich nicht dran verbrennen. Er ist im übrigen gegen Überlastung geschützt!

Stimmt das alles, dann kann man den ISP-Programmieradpapter anschließen. Es eignet sich jeder gängige ISP Dongle der *STK200 / STK300* kompatibel ist. Bei 16 Mhz machen allerdings billig Lösungen manchmal sehr viele Übertragungsfehler. Hier empfehlen wir einen modernen USB-ISP-Programmer. Hie rin der Anleitung verwenden wir teilweise noch einen Programmer der an die Druckerschnittstelle angeschlossen wird, das ist heute aber eigentlich er selten. Per USB geht's aber fast genauso!

Über den Programmieradapter wird nun das Board mit der Druckerschnittstelle ihres PC verbunden.. Dabei ist darauf zu achten das der ISP-Stecker auch in die richtige Wannenbuchse auf dem Board gesteckt wird.

Eine Verwechslung kann den ISP-Programmer oder den Controller zerstören.

Also unbedingt auf die Beschriftung achten! Falschrum kann man ihn nicht aufstecken.

Ist man kein AVR-Profi, so empfehle ich für den Test des Board's die Entwicklungsumgebung und Programmiersprache Bascom. Ein schneller Basic-Compiler mit hervorragender Benutzeroberfläche. Eine Version die nur in der Programmlänge beschränkt ist (max 2KB) gibt es beim Hersteller MCS Electronics kostenlos. Die genauen Links findet man am besten im Roboternetz-Bascom Forum http://www.roboternetz.de/community/forums/41-Basic-Programmierung-(Bascom-Compiler) Im Roboternetz gibt es ein Unterforum das sich nur mit Bascom beschäftigt. Hier findet man also immer Unterstützung.

Über oben genannten Link findet man 4 Zip Dateien die man in einem leeren Verzeichnis entpackt. Anschließend kann man das ganze einfach mit SETUP installieren. Anschließend legt man über File/New ein neue Datei an und gibt das nachfolgenden Beispielprogramme. ein.

Alternativ kann man das ganze Beispielprogramm und viele andere Programme auch auf der Seite <u>http://www.mikrocontroller-elektronik.de/</u> finden.

So sieht die Bascom Entwicklungsumgebung aus:

So sollte Bascom eingestellt werden um den Standard	ISP-Programmer zu benutzen:
---	-----------------------------

ASCOM-AVR Opti Compiler Communica	ons ation <u>E</u> nvironment <u>S</u> imulator <u>Programmer</u> M <u>o</u> nitor Printer
Programmer Play sound	STK200/STK300 Programmer
☐ Erase warning Parallel Serial	Auto Flash
LPT-address	378 + wieder gerograau dem b
Port delay	0 Well es imme chen wie Bei dem ublichen wie Bei dem ublichen wie
	foto:roboternetz.c

So sieht die Entwicklungsumgebung aus:

🛱 BASCOM-AVR IDE	
Elle Edit Brogram Iools Options Window Help	
D⊳R¶@Q & NIFF# M Y\$®\$1 - 0 ? ∎ Ø	
🖼 W: \AVR-Bascom Wega 1 6\rncontrol\rncontroltest.BAS	
Sub Label ·	
rncontroltest.BAS	
für PohoterNetz Board RN-CONTROL 1 1	
Das neue preisverte Controllerboard zum experimentieren	
'Aufgabe:	
Dieses testprogramm testet gleich meniere Eigenschatten auf dem board Den verschiedenen Tasten sind bestimmte Funktionen zugeordnet	
' Taste 1: Zeigt Bateriespannung über K5232 an ' Taste 2: Angeschlossene Motoren beschleunigen und abbremsen	
'Taste 3: Einige male Lauflicht über LED's anzeigen. Am I2C-Port darf in diesem Moment nichts angeschlossen sein	
'Taste 4: Zeigt analoge Messverte an allen Port A PIN's über RS232 an	
laste s. Leige digreater i to Lastand von fat bis fat di	
' Ser gut kann man aus dem Demo auch entnehmen vie Sound ausgegeben wird, ' wie Tasten abgefragt verden und wie Subroutinen und Funktionen angelegt verden	
'Autor: Frank	
weitere beispiere und beschreibung der hatware de	
Declare Sub Batteriespannung()	
Declare Sub Matterst() Declare Sub Tanflicht()	
Declare Sub Shorporta()	
Declare Function Tastenabrage() As Byte	
Sregiile = "ml6def.dat"	
Din I Ås Integer Din N Ås Integer	
231: 119 Insert	

In der Bascom Entwicklungsumgebung sollte man nach dem erstmaligen Start über *Options/Compiler/Chip* den Controllertyp anwählen. Bei der üblichen Bestückung müßten sie dort **M16** (für Mega16) zu wählen. Dann muß in einem anderen Karte dieses Dialoges *Programmer* noch der ISP-Adapter gewählt werden. In den meisten Fällen dürfte das der *STK200 / STK300 Programmer* sein.

Damit dürfte das wichtigste passiert sein. Allerdings ist nun noch der Quarz deaktiviert, da der Mega16 generell immer den internen 1 Mhz Takt nutzt. Aber das muss uns für den ersten Test nicht stören. Im Beispiel sollte dann jedoch statt <u>\$crystal</u> = 8000000 oder 16000000 die Anweisung <u>\$crystal</u> = 1000000 stehen. Jetzt kennen Sie auch schon die Anweisung die die Taktfrequenz angibt. Diese ist sehr wichtig damit Zeitabhängige Dinge wie Timerprogrammierung, RS232, Wait-Funktionen usw. korrekt funktionieren.

```
*****
'rncontroltest.BAS
'für
'RoboterNetz Board RN-CONTROL 1.41
'Das neue preiswerte Controllerboard zum experimentieren
'Aufgabe:
' Dieses Testprogramm testet gleich mehrere Eigenschaften auf dem Board
' Den verschiedenen Tasten sind bestimmte Funktionen zugeordnet
' Taste 1: Zeigt Batteriespannung über RS232 an
' Taste 2: Angeschlossene Motoren beschleunigen und abbremsen
' Taste 3: Einige male Lauflicht über LED's anzeigen. Am I2C-Bus
          darf in diesem Moment nichts angeschlossen sein
' Taste 4: Zeigt analoge Messwerte an allen Port A PIN's über RS232 an
''Taste 5: Zeigt digitalen I/O Zustand von PAO bis PA5 an
' Ser gut kann man aus dem Demo auch entnehmen wie Sound ausgegeben wird,
' wie Tasten abgefragt werden und wie Subroutinen und Funktionen angelegt werden
'Autor: Frank
'Weitere Beispiele und Beschreibung der Hardware
'unter http://www.Roboternetz.de oder http://www.mikrocontroller-elektronik.de/
Declare Sub Batteriespannung()
Declare Sub Motortest()
Declare Sub Lauflicht()
Declare Sub Showporta()
Declare Sub Showdigitalporta()
Declare Function Tastenabfrage() As Byte
$regfile = "m16def.dat"
Dim I As Integer
Dim N As Integer
DIM Ton As Integer
$crystal = 16000000
                                                          'Ouarzfrequenz
$baud = 9600
Config Adc = Single , Prescaler = Auto
                                                          'Für Tastenabfrage und Spannungsmessung
                                                          'Für Tastenabfrage
Config Pina.7 = Input
Porta.7 = 1
                                                          'Pullup Widerstand ein
Const Ref = 5 / 1023
                                                          'Für Batteriespannungsberechnung
Dim Taste As Byte
Dim Volt As Single
' Für Motorentest
'Ports für linken Motor
Config Pinc.6 = Output
                                                          'Linker Motor Kanal 1
Config Pinc.7 = Output
                                                          'Linker Motor Kanal 2
Config Pind.4 = Output
                                                          'Linker Motor PWM
'Ports für rechten Motor
Config Pinb.0 = Output
                                                          'Rechter Motor Kanal 1
Config Pinb.1 = Output
                                                          'Rechter Motor Kanal 2
```

```
Config Pind.5 = Output
                                                               'Rechter Motor PWM
Config Timer1 = Pwm , Pwm = 10 , Compare A Pwm = Clear Down , Compare B Pwm = Clear Down
Pwm1a = 0
Pwm1b = 0
Tccr1b = Tccr1b Or &H02
                                                               'Prescaler = 8
I = 0
Sound Portd.7 , 400 , 450
Sound Portd.7 , 400 , 250
Sound Portd.7 , 400 , 450
                                                               'BEEP
                                                               BEED
                                                               'BEEP
Print
Print "**** RN-CONTROL 1.1 *****"
Print "Das neue Experimentier- und Roboterboard"
Print
Do
  Taste = Tastenabfrage()
   If Taste <> 0 Then
      Select Case Taste
         Case 1
           Call Batteriespannung
                                                              'Taste 1 Zeigt Bateriespannung über
RS232 an
         Case 2
           Call Motortest
                                                               'Taste 2 Motoren beschleunigen und
abbremsen
         Case 3
            Call Lauflicht
                                                               'Einige male Lauflicht über LED's
anzeigen. Am I2C-Port darf in diesem Moment nichts angeschlossen sein
         Case 4
            Call Showporta
                                                               'Zeigt Messwerte an allen Port A PIN's
         Case 5
            Call Showdigitalporta
                                                              'Zeigt digitalen I/O Zustand von PAO bis
PA5 an
     End Select
      Sound Portd.7 , 400 , 500
                                                              'BEEP
  End If
   Waitms 100
Loop
End
'Diese Unterfunktion fragt die Tastatur am analogen Port ab
Function Tastenabfrage() As Byte
Local Ws As Word
   Tastenabfrage = 0
   Ton = 600
   Start Adc
   Ws = Getadc(7)
   If Ws < 1010 Then
      Select Case Ws
         Case 410 To 450
            Tastenabfrage = 1
            Ton = 550
         Case 340 To 380
            Tastenabfrage = 2
            Ton = 500
         Case 265 To 305
            Tastenabfrage = 3
            Ton = 450
         Case 180 To 220
            Tastenabfrage = 4
            Ton = 400
```

```
Case 100 To 130
            Tastenabfrage = 5
            Ton = 350
      End Select
      Sound Portd.7 , 400 , Ton
                                                             'BEEP
   End If
End Function
'Diese Unterfunktion zeigt Bateriespannung an
Sub Batteriespannung()
Local W As Word
  Start Adc
  W = Getadc(6)
  Volt = W * Ref
  Volt = Volt * 5.2941
  Print "Die aktuelle Spannung beträgt: " ; Volt ; " Volt"
End Sub
'Testet Motoren und Geschwindigkeitsreglung
Sub Motortest()
  'Linker Motor ein
  Portc.6 = 1
Portc.7 = 0
                                                             'bestimmt Richtung
                                                             'bestimmt Richtung
  Portd.4 = 1
                                                             'Linker Motor EIN
   'Rechter Motor ein
  Portb.0 = 1
                                                             'bestimmt Richtung rechter Motor
   Portb.1 = 0
                                                             'bestimmt Richtung rechter Motor
  Portd.5 = 1
                                                             'rechter Motor EIN
   I = 0
   Do
     Pwmla = I
     Pwm1b = I
     Waitms 40
     I = I + 5
  Loop Until I > 1023
   Wait 1
   Do
     Pwmla = I
     Pwm1b = I
     Waitms 40
     I = I - 5
   Loop Until I < 1
                                                             'Linker Motor aus
   Pwm1a = 0
   Pwm1b = 0
                                                             'rechter Motor aus
End Sub
'Einige male Lauflicht über LED's anzeigen. Am I2C-Port darf in diesem Moment nichts angeschlossen
sein
Sub Lauflicht()
  Config Portc = Output
   Portd = 0
   For N = 1 To 10
      For I = 0 To 7
        Portc.i = 0
        Waitms 100
        Portc.i = 1
     Next I
  Next N
  Config Portc = Input
End Sub
'Zeigt Die Analogen Messwerte An Port A An
Sub Showporta()
Local Ws As Word
   Config Porta = Input
```

```
For I = 0 To 5
                                                            ' Alle internen Pullup Widerständ
ein, bis auf Batteriespannungsmessungsport
    Porta.i = 1
  Next I
  Print
  Print "Ermittelte Messwerte an Port A:"
  For I = 0 To 7
                                                            ' Alle Eingäne inkl.messen
     Start Adc
      Ws = Getadc(i)
     Volt = Ws * Ref
     Print "Pin "; I; " ADC-Wert= "; Ws; " bei 5V REF waeren das "; Volt; " Volt"
  Next T
End Sub
'Zeigt den Zustand einiger freier I/OI/O von Die Analogen Messwerte An Port A An
Sub Showdigitalporta()
Local Zustand As String
  Config Porta = Input
  For T = 0 To 5
                                                            ' Alle internen Pullup Widerständ
ein, bis auf Batteriespannungsmessungsport
     Porta.i = 1
  Next T
  Print
  Print "Ermittelter I/O Zustand Port A:"
  For I = 0 To 5
                                                            ' Alle Eingäne inkl.messen
     If Pina.i = 1 Then
        Zustand = "High"
      Else
        Zustand = "Low"
      End If
     Print "Pin "; I; " I/O Zustand= "; Pina.i; "; Zustand
  Next I
End Sub
```

Das Testprogramm ist etwas länger weil es über eine Reihe von Unterfunktionen über Tastendruck gleich mehrere Dinge testen kann. Dadurch ersparen wir uns das laden unterschiedlicher Testprogramme und lernen so gleich nebenbei wie man Tasten abfragt.

Achtung: In der Prüfversion von Bascom kann diese Version eventuell nicht kompiliert werden, da diese etwas mehr als 2 KB Speicher benötigt. Zum kompilieren müsste das Demo entweder gekürzt oder die Vollversion des Bascom Compilers bestellt werden. Auf der mitgelieferten CD befindet sich jedoch bereits die kompilierte Version, diese läßt sich auch mit dem Demo übertragen.!

Haben sie alles richtig gemacht und oberes Beispiel auch korrekt eingegeben, dann können sie das Programm über das Symbol "Schwarze IC in der Toolbar" kompilieren. Es darf keine Fehlermeldung kommen. Erscheint eine Fehlermeldung dann klicken sie doppelt darauf, korrigieren sie die fehlerhafte Zeile und kompilieren sie erneut. Ist das Programm fehlerfrei kompiliert, so klicken sie auf das grüne Symbol etwas weiter rechts (soll wohl eine IC-Wechselfassung sein). Anschließend wählen sie Programm in dem erscheinenden Menü. Dadurch gelangen sie in das eingebaute Übertragungsprogramm. Rechts oben müssen Sie nun nochmals M16 für Mega16 wählen (falls noch nicht vorgegeben). Danach klicken sie auch in diesem Dialog auf das gleiche grüne Symbol. Wenn sie alles in Bascom richtig eingestellt haben und die Platine als auch das ISP Kabel in Ordnung ist, dann sollte das Programm in wenigen Sekunden übertragen worden und auch gestartet worden sein.

Den erfolgreichen Start erkennt man an einer kurzen Piepfolge. Drücken Sie nun nochmal zum Test die Reset-Taste in der Mitte des Boards. Die kurze Piepfolge müsste sich wiederholen, denn dadurch wird das Programm nochmals gestartet.

Die Tonfolge klingt vermutlich recht schrecklich und unheimlich lahm. Dies liegt daran das das Programm eigentlich für 8 und 16 Mhz ausgelegt ist. Bei 1 Mhz müsste man bei den Sound Befehlen andere Angaben machen. Da auch die RS232 nicht so sehr gut mit 1 Mhz funktioniert, gehen wir nun gleich dazu über das Board auf 8 (bzw. 7,3728 Mhz) oder 16 Mhz umzustellen.

Testprogramm in der Programmiersprache C

Natürlich läßt sich RN-Control auch in C programmieren. Der notwendige Compiler WinAVR wird bereits kostenlos mitgeliefert. Das obere Testprogramm findet man in der Programmiersprache C für RN-Control auf folgender Webseite:

http://www.roboternetz.de/wissen/index.php/RN-Control_Demprogramm_in_C

So ist der Ablauf in der Bascom-Entwicklungsumgebung:

Als erstes Programmcode kompilieren

Nun den eingebauten Programmer aufrufen:

BASCOM-AVR IDE - [W:\AVR-Bascom\Wega16\rncontrol\rncontroltest.BAS]	
He Edit Program Iools Options Window Help	Ξ×
D©₽₿@Q ¾■⊄₽₽ M ⊻♦₫♥∎■₡ ?₽ #	
Sub Label Run programmer (F4)	
 Taste 2: Angeschlossene Motoren beschleunigen und abbremsen Taste 3: Einige male Lauflicht über LED's enzeigen. Am I2C-Bus darf in diesem Moment nichts angeschlossen sein Taste 4: Zeigt analoge Messwerte an allen Port A PIN's über RS232 an 'Taste 5: Zeigt digitalen I/O Zustand von PAO bis PA5 an 	
'Ser gut kann man aus dem Demo auch entnehmen vie Sound ausgegeben wird, 'wie Tasten abgefragt verden klickent um den tionen angelegt werden 'Autor: Frank 'Weitere Beispiele und B eingebauten Programmer 'unter http://www.Roboternetz.de oder robotikhardware de 'Eigene Programmbeispiele ain zu Publent statsstatsstatsstats	
Declare Sub Batteriespannung() Declare Sub Motortest() Declare Sub Lauflicht() Declare Sub Shovporta() Declare Sub Showdigitalporta() Declare Function Tastenabfrage() As Byte	
<pre>\$regfile = "m16def.dat" Dis_L_As_Integer</pre>	~
1: 1 Insert Run programmer (F4)	

Und nun das Programm in den Chip Übertragen (ISP-Programmierdongel muß angeschlossen sein)

Nun Fuse-Bits des Mega einstellen

Nachdem das Beispiel gut zu funktionieren scheint, sollte man gleich die Gelegenheit nutzen und den Controller auf die richtige Quarz Taktfrequenz von 8 Mhz oder 16 Mhz umzuschalten. Dies kann man auch in Bascom machen indem man wieder den Programmer über das grüne Symbol aufruft und unten die Seite "Lock and Fuse Bits" anwählt (siehe Bild).

潴 AVR ISP STK p	rogrammer				
<u>F</u> ile <u>B</u> uffer <u>⊂</u> hip					
	2 2 2 1		hip M16	- 💾 🗶	
Manufactor Atr Chip M1	nel 6	Flash ROM EEPROM	16 KB 1024	Size Programmed:	60
FlashROM EEF	PROM Lock and Fu	se Bits			
Fusebits				•	
Fusebit C	1:BODLEVEL 2.7V				
Fusebit B	1:BODEN disabled				Write LB
Fusebit KL	11:reserved				Luur en l
Fusebit A987	1111:1111 Write FS				
Fusebits High			Luce coul		
Fusebit M 1:Disable OCD			Write FSH		
Fusebit J	1:Disable JTAG				June coel
FusebitI	0:SPI enabled				Write FSE
Fusebit H	1:CKOPT 1				Luur maal
Fusebit G	1:Erase EEPROM v	/hen chip eras	se in the second se	•	Write PRG
Verified Ok					
452 ROM	0 EPROM		TESTPRG1.BIN		

Das ganze muß bei angeschlossenen Board erfolgen damit die momentan eingestellten Werte erscheinen. Die Werte sollten so eingestellt werden, das sie der oberen Abbildung entsprechen. Hier sollten Sie unbedingt *Fusebit C,B,KL* und A987 vergleichen und gegebenenfalls ändern. Gleichzeitig sollten Sie an dieser Stelle *Fusebit J* auf *Disable JTAG* einstellen, damit auch die JTAG-Ports frei sind, ansonsten funktioniert auch der Lauflicht –Test im Testprogramm nicht korrekt.

Haben sie die Werte verändert, dann klicken Sie auf Write FS und Write FSH.

Dadurch sollte der Controller auf 8 Mhz oder 16 Mhz umgeschaltet werden, je nachdem was für einen Quarz sie eingelötet / eingesteckt haben. Benötigt man sehr hohe Geschwindigkeiten bei der RS232 Schnittstelle, dann sind übrigens krumme Quarzwerte günstiger (siehe Roboternetz.de).

Alternativ kann man auch das beliebte Pony-Program verwenden, dazu mehr in dem Artikel "AVR leicht gemacht" im Roboternetz im unter Artikeln <u>http://www.roboternetz.de/phpBB2/artikeluebersicht.php</u>

Jetzt muss noch die Quarzfrequenz im letzten Beispiel wieder mit der Anweisung \$crystal = 8000000 oder
halt \$crystal = 16000000 angegeben werden und schon können sie erneut compilieren und das
Programm übertragen. Klappt alles genauso wie vorher, dann sollte alles perfekt funktioniert haben.
Achtung: Eine falsche Einstellung der Fuse-Bits kann den Controller unbrauchbar machen!

Nun können wir über die Board Tasten folgende Funktionen auslösen:

Taste 1	Zeigt Batteriespannung über RS232 an
Taste 2	Angeschlossene Motoren beschleunigen und abbremsen
Taste 3	Einige male Lauflicht über LED's anzeigen. Am I2C-Bus darf in diesem Moment nichts
	angeschlossen sein
Taste 4	Zeigt analoge Messwerte an allen Port A PIN's über RS232 an
Taste 5	Zeigt digitalen I/O Zustand von PA0 bis PA5 an

RS232

Viele der zuvor genannten Funktionen geben die Daten auf der RS232-Schnittstelle aus. Dazu muß natürlich die RS232-Schnittstelle über ein 3 poliges Kabel mit der 3 poligen Stiftleiste RS232 auf dem Board verbunden werden. Wer zufällig einen Conrad CCRP5 Zuhause haben sollte, der kann dazu das mitgelieferte RS232 Kabel verwenden da unsere RS232 Stiftleiste pinkompatibel ist. Ist dies nicht der Fall kann man sich recht einfach eines selbst löten.

Da in der Mitte GND und an den Außenseiten RX/TX liegt, schadet es in der Regel nicht wenn es mal falsch aufgesteckt werden sollte. Allerdings tut sich dann auch nix ;-) Also im Zweifel auch mal umstecken.

Danach kann man über Menü Tools von Bascom (oder Modem Symbol) einen Terminalemulator starten. Wenn man nun Taste 1, dann 4 und danach 5 klickt, dann sollte es in etwa so auf dem Bildschirm aussehen:

BASCOM-AVR Terminal emulator	
<u>File T</u> erminal	
Die aktuelle Spannung betrögt: 11.359284398 Volt Ermittelte Messuerte an Port A: Pin D ADC-Hert= 1023 bei 5V REF waeren das 4.999999517 Volt Pin 1 ADC-Hert= 1023 bei 5V REF waeren das 4.999999517 Volt Pin 2 ADC-Hert= 1023 bei 5V REF waeren das 4.999999517 Volt Pin 3 ADC-Hert= 1023 bei 5V REF waeren das 4.999999517 Volt Pin 4 ADC-Hert= 1023 bei 5V REF waeren das 4.999999517 Volt Pin 5 ADC-Hert= 1023 bei 5V REF waeren das 4.999999517 Volt Pin 6 ADC-Hert= 1023 bei 5V REF waeren das 4.999999517 Volt Pin 7 ADC-Hert= 1023 bei 5V REF waeren das 4.999999517 Volt Pin 7 ADC-Hert= 1023 bei 5V REF waeren das 4.999999517 Volt Pin 7 ADC-Hert= 1023 bei 5V REF waeren das 4.999999517 Volt Pin 7 ADC-Hert= 1023 bei 5V REF waeren das 4.999999517 Volt Pin 7 ADC-Hert= 1023 bei 5V REF waeren das 4.999999517 Volt Pin 7 ADC-Hert= 1023 bei 5V REF waeren das 4.999999517 Volt Pin 7 ADC-Hert= 1023 bei 5V REF waeren das 4.999999517 Volt Pin 7 ADC-Hert= 1023 bei 5V REF waeren das 4.999999517 Volt Pin 7 ADC-Hert= 1023 bei 5V REF waeren das 4.999999517 Volt	
COM1:9600,N,8,1	

Kommt garnix, dann ist eventuell das Kabel falsch herum auf die Stiftleiste aufgesteckt worden. Kommen wirre Zeichen, dann ist vermutlich im Terminalprogramm noch keine 9600 Baufd eingestellt. Es kann jedoch auch an der falsch eingestellter Quazfrequenz liegen.

Bei 1 Mhz (ohne Quarz) sollte man nach Möglichkeit nicht mehr als 1200 Baud verwenden.

Über Taste 2 kann man die zwei angeschlossenen Motoren kurz anlaufen und wieder abbremsen lassen.

Per RS232 programmieren (Bootloader)

Bislang haben Sie erfahren das RN-Control mit einem ISP-Dongel programmiert werden kann. Neben dem ISP-Dongel der an den Druckerport angeschlossen wird, bieten einige Hertseller auch einen USBISP an. Dieser wird an einen freien USB-Port ihres Rechners angeschlossen und erlaubt eine noch schnellere Programmierung. Der Ablauf ist der gleiche, es muss lediglich in der Bascom Konfigurartion der USB-Programmer gewählt werden.

Wenn Sie RN-Control nach dem 5.März 2007 gekauft haben, dann gibt es noch eine dritte Möglichkeit, denn seit diesem Datum wird das Board mit vorinstalliertem Bootloader geliefert. Man erkannt das auch daran das auf dem roten Aufkleber das Wort "BOOTLOADER" auftaucht. Auch diese Version des Boardes kann ganz normal per ISP oder USBISP programmiert werden. Neu hinzugekommen ist jedoch die Programmierung per RS232 ganz ohne ISP-Dongel. Allerdings funktioniert diese Vorgehensweise nur in Bascom Basic.

Dies geht ganz einfach. Dazu müssen Sie in der Konfiguration von Bascom folgendes einstellen.

BASCOM-AVR Opt	ions
<u>Compiler</u> Co <u>m</u> munic	ation <u>Environment</u> Simulator <u>Programmer</u> Monitor Printer
Programmer	MCS Bootloader
Play sound	
Erase warning	Auto Flash 🔽 AutoVerify 🔽 Upload Code and Data compile 🗌 Set focus to terminal emulator after programming
Serial MCS Lo	ader
COM-port	1 BAUD 38400
STK500 EXE	"C:\Programme\Atmel\AVR Tools\STK500\Stk500.
USB	000040012654
Default	✓ <u>D</u> k ズ <u>C</u> ancel

Wenn nun ein compiliertes Programm auf das Board RN-Control übertragen werden soll, so klicken Sie wie im letzen Kapitel beschrieben, auf das grüne Symbol "Program Chip". Alternativ können Sie auch die Taste F4 in Bascom betätigen. Im Gegensatz zur ISP-Programmierung kommt nun ein anderer Dialog:

MCS Bootloader	
Reset Chip	
Cancel	
Log Window Open COM Sending Init byte	~
<	>
0%	

Jetzt müssen Sie nur noch die RESET Taste am Board betätigen und das Programm wird automatisch übertragen und gestartet. Natürlich müssen Sie das RS232-Kabel mit dem dreipoligen Stecker richtig herum am Board angesteckt haben, im Zweifel einfach den dreipoligen Stecker umdrehen.

Die Programmierung per RS232 geht ebenfalls sehr fix und ist durchaus recht bequem. Sie können im übrigen auch folgende Programmzeile in Ihrem Quellcode (irgendwo am Anfang) einfügen:

\$programmer = 13

'13=MCS Bootloader

Dadurch können Sie sich das ändern des Programmers in der Bascom Konfiguration sparen, denn so weiss Bascom automatisch das Sie das Programm über die RS232 Schnittstelle übertragen wollen

Leider werden derzeit keine EEPROM sondern nur Flash Daten per Bootloader übertragen. Wenn Ihr Programm keine EEPROM-Data Anweisung enthält (was die Regel ist), dann reicht dies völlig aus. Dennoch würde ich ihnen den Kauf eines ISP und USBISP's noch empfehlen, denn es gibt durchaus Anwendungsfälle wo EEPROM Daten oder auch Fusebit Einstellungen geändert werden sollen, dies geht derzeit mit dem Bootloader per RS232 nicht. Zudem sparen Sie ca. 2000 Byte Speicherplatz wenn sie keinen Bootloader nutzen.

Sollten Sie noch ein RN-Control ohne vorprogrammierten Bootloader besitzen, so kann der Bootloader auch per ISP nachinstalliert werden. Auf der Seite <u>http://www.mikrocontroller-elektronik.de/</u> ist er als Hex vorhanden. Wichtig ist jedoch das nach der Installation des Bootloaders noch zwei Fusebit Einstellungen verändert werden. Diese sollten in Bascom dann wie folgt aussehen:

🚟 * * AVR ISP Programmer * *				
Elle Buffer Chip				
<u>/ > - </u>	🔓 🔳 💶 🛛 C	hip ATMEGA32	- 🖁 🖉	
Manufactor Atmel Chip ATMEGA32	Flash ROM EEPROM	32 KB 1024	Size Programm	ed:6
FlashROM EEPROM Lock and Fuse Bits				
Lockbit 21 11:No memo	ory lock features enabl	ed for parallel an	d serial programı 🔺	Befresh
Fusebits				
Fusebit C 1:BODLEVE	L 2.7V			Write LB
Fusebit B 1:BODEN di	sabled			
Fusebit KLA9i 111111:Ext. Crystal/Resonator High Freg.; Start-up time: 16K CK + 64 r Write FS				
Fusebits High				
Fusebit I 1:0CDEN fu	se unprogrammed	So sollte es	aussehen	Write FSH
Fusebit H 1:JTAG dise	bled	wonn Sie Be	otloador	
Fusebit Q 0:Serial prog	gramming enabled	wern Sie Bu	blioadei	Write FSE
Fusebit P 1:osc. option	is not programmed	- nutzen wolle		
Fusebit G 1:Erase EEF	PROM when chip erase	2		Write PRG
Fusebit FE 01:1024 word	ds boot size			
Fusebit D 1:Reset ved	tor is \$0000		• •	
3998 ROM 0 EPF	ROM R		A32.BIN	

Damit haben Sie den ersten Einstieg erfolgreich abgeschlossen.

Wenn Sie das Demoprogram gründlich studieren werden Sie viele Sachen davon ableiten und in eigenen Programmen verwenden können. Der Mikrocontroller bietet natürlich noch eine ganze Reihe weiterer Features, aber dies alles zu Beschreiben würde ganze Bücher füllen. Daher würde ich Ihnen für den tieferen Einstieg noch folgende Empfehlungen geben:

Buch: AVR-Mikrocontroller Lehrbuch von Roland	Das Buch führt leicht verständlich in die Welt der AVR-Mikrocontroller ein.
Walter	Systematisch, Schritt für Schritt, mit der Hochsprache Basic und vielen gut
Deutsch	kommentierten Beispiel-Listings. Was auch erwähnt werden muß: Der Stoff
	ist dicht und das Buch verzichtet auf "Seitenschinderei".
	Siehe Literaturempfehlungen auf http://www.mikrocontroller-elektronik.de/
Literatur Empfehlungen in RN-Wissen	Literatur Empfehlungen und Links unter RN-Wissen.de
http://www.roboternetz.de	Das inzwischen größte deutsche Forum was sich mit Robotik- und
	Mikrocontrollern sowie auch der Bascom-Programmierung beschäftigt. Hier
	findet man schnell Hilfe. Aber auch eigene Beiträge sind willkommen.
	Hier findet man auch das ausführliche Datenblatt zum Mega 16 und 32 im
	Download-Bereich.
	Im Artikelbereich findet man viele Grundlagen und Schaltungen.
http://www.mikrocontroller-elektronik.de/	Das Elektronik Blog-Magazin mit vielen CC-Projekten

Zusammenfassung der wichtigsten Board-Adressen

Funktion	Port	Logische Bedeutung und Beispiel
Linker Getriebemotor Ein/ Aus	PD4	PD4 = 0=Aus 1=Ein Bascom-Beispiel: Config Pind.4 = Output Portd.4 = x Im PWM-Mode: Pwm1a = 0 oder Geschwindigkeitl 0-1023
Linker Getriebemotor Drehrichtung	PC6 PC7	Erste Richtung: PC6=0 PC7=1 Zweite Richtung PC6=1 PC7=0 Bascom-Beispiel: Config Pinc.6 = Output Config Pinc.7 = Output Portc.6 = 1 Portc.7 = 0
Rechter Getriebemotor Ein/ Aus	PD5	PD5 = 0=Aus 1=Ein Bascom-Beispiel: Config Pind.5 = Output Portd.5 = x Im PWM-Mode: Pwm1b = 0 oder Geschwindigkeitl 0-1023
Rechter Getriebemotor Drehrichtung	PB0 PB1	Erste Richtung: PB=0 PB=1 Zweite Richtung PB=1 PB=0 Bascom-Beispiel: Config Pinb.0 = Output Config Pinb.1 = Output Portb.0 = 1 Portb.1 = 0
RS232 TX	PD1	Bascom-Beispiel:
RS232 RX	PD0	Bascom-Beispiel: Liest 3 Byte ein: Dim a as Byte, c as integer Inputbin a,c Oder: Input "warte auf zwei zeichen",x,y
AD Port0 frei	PA0	Bascom-Beispiel: Config Adc = Single , Prescaler = Auto Start Adc W = Getadc(0)
AD Port1 frei	PA1	Wie zuvor
AD Port2 frei	PA2	Wie zuvor
AD Port3 frei	PA3	Wie zuvor
AD-Port4 frei	PA4	Wie zuvor
AD-Port5 frei	PA5	Wie zuvor
AD-Port6 Batteriespannung oder Frei	PA6	Siehe Demo
AD-Port7 Tastenabfrage	PA7	Siehe Demo

	PC0	Bascom-Beispiel: I2cstart
IZC BUS SCL		I2cwbyte slaveadr
		I2cstop
	PC1	Bascom-Beispiel:
		12cstart
I2C BUS SDA		12cwbyte slaveadr
		12CWDyte 15
	DDO	12CSTOP
	PB2	Ober Interrupt konnen nier Anderungen an I2C
I2C BUS INT		Erweiterungen gemeidet werden. wird derzeit nur von
		eingen Komponenten unterstutzt. Wird in 5p6 kein Sumper
	DR7 DR6	Diese Leitungen werden für Programmieradapter und andere
ISP (SPI-Interface)	DB5	SPLEnveiterungen genutzt
l FD'e	PC0 bis PC7	Per DIP-Schalter zuschalthare I ED's
		Sound Portd 7 400 450
Lautsprecher		Sound Fond.7 , 400 , 450
	PD2, PD3,	
Ports die immer frei sind, auch dann	PD6, PC2,	
wenn alle Funktionen des Boards	PC3, PC4,	
genutzt werden (Motoren, Sound,	PC5, PB2,	
I2C,Tasten,	PB3, PB4,	
Batteriespannungsüberwachung, ISP	PA0, PA1,	
etc.)	PA2, PA3,	
	PA4, PA5	

So können auch Drähte einfach eingesteckt werden:

Beispiel wie man Sensoren /Aktoren anschließt

SRF10 Ultraschallsensor an RN-Control

Verschiedene LCD's an RN-Control

Es lassen sich zahlreiche LCD's an RN-Control betreiben. Hier einige LCD's :

robotikhardware.de

Nähere Tips dazu auf Seite <u>http://www.roboternetz.de/wissen/index.php/RN-Control</u> Bezugsquellen für Sensoren finden sie auf <u>UNSerer Seite</u>

Schaltplan

Sollte in dieser Doku noch der ein oder andere Fehler drin stecken, so bitte ich um Nachsicht und Hinweise per Kontaktformular über http://www.mikrocontroller-elektronik.de/

Projekt-Seite zum herunterladen: <u>http://www.mikrocontroller-elektronik.de/</u> Forum-Seite für Fragen: <u>http://www.roboternetz.de/community/forum.php</u>

Weiterentwicklungen können gerne ebenfalls auf der <u>Projektseite</u> unter CC-Lizenz veröffentlicht werden!